Polynomial Algorithms for LP over a Subring of the Algebraic Integers with Applications to LP with Circulant Matrices

نویسندگان

  • Ilan Adler
  • Peter A. Beling
چکیده

We show that a modified variant of the interior point method can solve linear programs (LPs) whose coefficients are real numbers from a subring of the algebraic integers. By defining the encoding size of such numbers to be the bit size of the integers that represent them in the subring, we prove the modified algorithm runs in time polynomial in the encoding size of the input coefficients, the dimension of the problem, and the order of the subring. We then extend the Tardos scheme to our case, obtaining a running time which is independent of the objective and right-hand side data. As a consequence of these results, we are able to show that LPs with real circulant coefficient matrices can be solved in strongly polynomial time. Finally, we show how the algorithm can be applied to LPs whose coefficients belong to the extension of the integers by a fixed set of square roots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unified Approach for Design of Lp Polynomial Algorithms

By summarizing Khachiyan's algorithm and Karmarkar's algorithm forlinear program (LP) a unified methodology for the design of polynomial-time algorithms for LP is presented in this paper. A key concept is the so-called extended binary search (EBS) algorithm introduced by the author. It is used as a unified model to analyze the complexities of the existing modem LP algorithms and possibly, help ...

متن کامل

On higher rank numerical hulls of normal matrices

‎In this paper‎, ‎some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated‎. ‎A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given‎. ‎Moreover‎, ‎using the extreme points of the numerical range‎, ‎the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$‎, ‎where $A_1...

متن کامل

Double-null operators and the investigation of Birkhoff's theorem on discrete lp spaces

Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null  operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...

متن کامل

Generalized Rings of Integer-valued Polynomials

The classical ring of integer-valued polynomials Int(Z) consists of the polynomials in Q[X] that map Z into Z. We consider a generalization of integervalued polynomials where elements of Q[X] act on sets such as rings of algebraic integers or the ring of n× n matrices with entries in Z. The collection of polynomials thus produced is a subring of Int(Z), and the principal question we consider is...

متن کامل

Vector-Circulant Matrices and Vector-Circulant Based Additive Codes over Finite Fields

Circulant matrices have attracted interest due to their rich algebraic structures and various applications. In this paper, the concept of vector-circulant matrices over finite fields is studied as a generalization of circulant matrices. The algebraic characterization for such matrices has been discussed. As applications, constructions of vector-circulant based additive codes over finite fields ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 57  شماره 

صفحات  -

تاریخ انتشار 1991